Размер:
A A A
Цвет: C C C
Изображения Вкл. Выкл.
Обычная версия сайта
Login
Password
RU

Federal Research Center 
"Krasnoyarsk Science Center of the Siberian
Branch of the Russian Academy of Sciences"

 Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Federal Research Center 
"Krasnoyarsk Science Center of the Siberian
Branch of the Russian Academy of Sciences"

Лаборатория фотобиологии

06.06.2018 г.

фотобиология лаборатория.jpg

Основные направления

  • Изучение биолюминесцентных систем светящихся организмов: бактерий, кишечнополостных, червей и светляков, выявление общих закономерностей и различий между ними, а также разработка методических основ применения биолюминесценции в медицине, биотехнологии, экологии и образовании.
  • Биолюминесцентные системы светящихся бактерий, кишечнополостных, червей и светляков: общие закономерности и различия
  • Разработка методических основ применения биолюминесценции в медицине, биотехнологии, экологии и образовании

Основные достижения

  • Расшифрована структура и проведен полный синтез люциферина сибирских энхитреид Fridericia heliota ключевого компонента АТФ-зависимой биолюминесцентной системы нового типа. Новый люциферин прост в химическом синтезе, исключительно стабилен, и не токсичен. Уникальность биолюминесцентной системы F. heliota делает ее перспективной для широкого спектра аналитических применений в медицине и фармацевтике для визуализации физиологических процессов, происходящих в клетках и целых организмах, а также для определения различных аналитов: АТФ, ферментов, антител, антигенов. Открытие дает начало новому направлению фундаментальных исследований в биолюминесценции.
  • Исследован механизм, отвечающий за люминесцентные свойства червя Fridericia heliota, обнаруженного в сибирской тайге. С помощью ЯМР и масс-спектрометрии удалось расшифровать структуру продукта биолюминесцентной реакции - оксилюциферина. Оксилюциферин образуется в результате окислительного декарбоксилирования остатка лизина люциферина, что обеспечивает энергию для генерации света. Энергия АТФ используется лишь для активации остатка лизина в реакции с кислородом. Предложены основные этапы биолюминесцентной реакции, катализируемой люциферазой олигохет F. heliota. Полученные данные позволяют говорить об установлении нового механизма люминесценции у живых организмов.
  • При разработке лабораторного теста для диагностирования рассеянного склероза в тесном сотрудничестве с лабораторией химии РНК (ФГБУН ИХБЭМ, Новосибирск) получен биолюминесцентный сенсор нового типа – химический конъюгат 2‘-F-РНК-аптамера, специфичного к патологическим аутоантителам против основного белка миелина и Са2+-регулируемого фотопротеина обелина. Микропланшетный анализ модельных образцов показал перспективность полученного соединения как высокочувствительного сенсора для выявления антител, ассоциированных с развитием рассеянного склероза.
  • Определена пространственная кристаллическая структура светочувствительного Са2+-регулируемого фотопротеина беровина из ктенофор Beroe abyssicola в апоформе, связанной с ионами кальция, с разрешением 2.0 A.
  • Клонированы кДНК гены, кодирующие несколько изоформ Са2+-регулируемого фотопротеина митрокомина из гидромедузы M. cellularia. Анализ кДНК выявленных изоформ митрокомина позволил предположить, что две изоформы являются продуктами двух аллельных генов, тогда как остальные изоформы, по-видимому, являются продуктами транскрипционных мутаций. Определена пространственная структура митрокомина с разрешением 1.30 A. Показано, что С-концевой тирозин не является остатком, необходимым для биолюминесценции митрокомина, так как его удаление увеличивает удельную биолюминесцентную активность и эффективность активации белка.
  • Проведен анализ степени воздействия консервантов бензоата натрия (Е-211), сорбата калия (Е-202) и сорбиновой кислоты (E-200) на активность протеаз трипсина и химотрипсина. Показано, что консерванты в значительной степени ингибируют активность протеаз при концентрации, меньшей установленного норматива их содержания в продуктах питания. Ингибирующий эффект усиливается при увеличении времени контакта консерванта и фермента.
  • Продемонстрировано, что активация биолюминесценции морских бактерий в результате низкодозового ионизирующего облучения в водной среде может происходить без проникновения радионуклида в клетки. Вывод сделан на основе использования в качестве твердого источника бета-облучения полиэтиленовых пленок, меченных тритием, в условиях жесткой фиксации радионуклида. Активация свечения бактерий предположительно обусловлена радиолизом и ионизацией водной среды, т.е. образованием вторичных продуктов радиоактивного распада, инициирующих изменение скоростей мембранных клеточных процессов.

Основные приборы и оборудование

  • биолюминометры, включая планшетные биолюминометры Luminoskan Ascent (TermoElectron Corp.) и Mithras LB940 (Berthold Technologies) с комплектом инжекторов
  • спектрофотометры Uvicon 943 (Rontron Instruments) и UV-2600 (Shimadzu)
  • спектрофлуориметр Cary Eclipse (Agilent Technologies) для исследования спектральных свойств биолюминесцентных белков.

Методы исследований

  • Традиционные методы молекулярной биологии и генной инженерии.
  • Аффинная, ионообменная и высокоэффективная хроматография.
  • Биолюминесцентные и спектроскопические методы.
  • Метод остановленной струи – stopped flow.
  • Рентгеноструктурный анализ и ЯМР.

Сотрудники

 Высоцкий.jpg Заведующий лабораторией
Высоцкий Евгений Степанович
кандидат биологических наук

+7 391 2494430
eugene.vysotski@gmail.com




Share:



Up