Добро пожаловать в ФГБНУ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»!

 

ФГБНУ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» (ФИЦ КНЦ СО РАН) был создан 1 августа 2016 года. Центр объединил одиннадцать научных организаций Красноярского края. Стратегическая цель создания центра – развитие фундаментальных и прикладных исследований, связанных с космическими, информационными и биосферными технологиями, достижение и сохранение ведущих конкурентных позиций в данных актуальных областях современной науки. 

 

ФИЦ КНЦ СО РАН на сегодняшний день является оптимальной научно-организационной структурой для выполнения фундаментальных и прикладных работ мульти-, транс- и междисциплинарного характера, позволяющей выполнять исследования в рамках государственных заданий, научных грантов и программ, вести работы по контрактам с предприятиями реального сектора экономики. Институты, интегрированные в ФИЦ КНЦ СО РАН, обладают уникальной совместной исследовательской инфраструктурой, включающей Центр коллективного пользования, единым земельным комплексом в Академгородке и высокопрофессиональным кадровым составом, что призвано обеспечить проведение прорывных исследований и практических разработок в областях, являющихся стратегически важными для страны.

Создание Федерального исследовательского центра несет важнейшую социальную функцию: оно станет существенным вкладом в повышение интеллектуального уровня и статуса города Красноярска как одного из ведущих научных центров России.

ФИЦ КНЦ СО РАН, его институты открыты для сотрудничества со всеми заинтересованными организациями в области научных исследований и создания наукоемкой продукции и современных технологий.

Директор ФИЦ КНЦ СО РАН,

д.ф.-м.н. Волков Никита Валентинович.

 

Последние новости

15/12/2017

Ученые создали новый класс люминофоров для электронной промышленности

Международный коллектив химиков из Китая, России и Японии синтезировал новое кристаллическое вещество на основе оксидов редкоземельных металлов, а также описал его структуру и свойства. Расшифровка рентгенограммы нового соединение показала, что он относится к новому, ранее неизвестному классу. Также ученые установили, что соединение имеет свойства, делающие его пригодным для использования в электронной промышленности, например, в мониторах.

Зарубежные исследователи, соединив нитраты редкоземельных элементов с сульфатами и гидратами аммония, синтезировали новое порошковое вещество, обладающее светимостью (способностью преобразовывать электрическую энергию в свет). Люминесцентность (светимость) широко распространена среди соединений редкоземельных элементов, и в этом не было бы ничего удивительного, но спектр нового соединения был совершенно уникальным, не похожим ни на один из известных или ожидаемых. Сопоставление рентгенограммы с базами данных показало, что соединение не принадлежит ни к одному из известных классов.

Для определения кристаллической структуры вещества, то есть, описания, из атомов каких химических элементов состоит кристалл и как именно атомы в этом кристалле расположены друг относительно друга китайско-японский коллектив привлек российских коллег.

Сотрудник Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН и Сибирского федерального университета Максим Молокеев решил задачу, подтвердив, что соединение действительно относится к ранее неизвестному классу.

«Главная сложность была в том, что не удавалось получить монокристалл нового соединения, следовательно, невозможно было провести исследование стандартными для монокристаллов рентгеновскими способами определения структуры. Для порошков эта задача намного сложнее«, – рассказал Максим Молокеев.

Расшифровав порошковую рентгенограмму, ученый выяснил, что новый материал состоит из четырехгранников комплексных анионов оксида серы (SO₄2−) и ионов редкоземельных элементов, окружённых атомами кислорода.

Самым удивительным свойством нового соединения оказалось то, что при нагреве до 800℃ происходит экологически чистый синтез люминофоров, пригодных для использования в электронной промышленности (производстве светоизлучающих приборов, например, мониторов). Примечательно, что при синтезе выделяется исключительно обычная вода, в то время как при получении других подобных люминофоров обычно выделяются токсичные побочные продукты.

РИА НАУКА

12/12/2017

Красноярские ученые разработали антимикробные покрытия из бактериальной целлюлозы

Коллектив ученых Федерального исследовательского центра Красноярский научный центр СО РАН и Сибирского федерального университета разработал композитные пленки из бактериальной целлюлозы, нагруженные антибиотиками и наночастицами серебра. В экспериментальных условиях образцы подавляют развитие модельных культур патогенных организмов – кишечной и синегнойной палочек, стафилококка, клебсиеллы. Исследователи отмечают, что полученные пленки могут быть использованы для производства антибактериальных раневых покрытий.

Бактериальная целлюлоза – материал, который в последнее время привлек внимание многих исследователей. Бактерии производят это соединение, как побочный продукт жизнедеятельности. Целлюлоза, которую синтезируют бактерии, близка к растительной, при этом обладает рядом уникальных свойств, – отличается высокой биосовместимостью, не вызывает аллергических реакций или токсичных эффектов при контакте с живыми клетками; имеет наностроение, похожее на структуру тканей человека. Для расширения областей применения бактериальной целлюлозы необходим поиск новых штаммов продуцентов и разработка высокопродуктивных технологий.

Недавно красноярские ученые выделили и запатентовали штамм уксуснокислых бактерий Komagataeibacter xylinus B-12068, способный производить целлюлозу в больших количествах. Это позволило перейти к экспериментам по использованию выделяемого из бактерий соединения в биомедицинских целях. Для производства антимикробных покрытий необходимо прочно связать целлюлозную основу с бактерицидными агентами. При этом, учитывая задачи промышленного масштабирования, технология получения композитной пленки должна быть достаточно простой и не затратной.

Исследователи протестировали несколько антимикробных пленок, представляющих собой композиты целлюлозы с антибиотиками цефтриаксоном и амикацином или наночастицами серебра. Для создания раневых покрытий, нагруженных антибиотиками, пленки пропитывали раствором лекарственного препарата и высушивали. Технология получения покрытий с наночастицами серебра была более сложной. Сначала целлюлозные пленки нагревали в растворе нитрата серебра, а после замораживали, высушивали и прессовали в вакууме.

«Мы детально исследовали свойства полученных покрытий, их способность связывать белки и выделять действующие антимикробные соединения. Оба типа пленок были эффективны в качестве потенциальных раневых покрытий. Пленки с антибиотиками оказались чуть более эффективны, чем с наночастицами серебра, в подавлении патогенных микроорганизмов. Однако пленки с серебром были не токсичными при контакте с клетками, формирующими эпидермис», — рассказывает доктор биологических наук, заведующая лабораторией Института биофизики ФИЦ КНЦ СО РАН, профессор Сибирского федерального университета Татьяна Волова.

Работу по созданию антимикробных покрытий можно рассматривать, как одно из звеньев будущей технологической цепочки под ключ. Сначала ученые выделили и запатентовали новый штамм бактерий, который способен производить целлюлозу. Потом определили оптимальные условия для синтеза этого ценного соединения. Сейчас научились получать пленки, нагруженные антибактериальными агентами, исследовали их структуру и продемонстрировали важные для медицинских материалов свойства.

«Мы полагаем, что такие материалы можно использовать для лечения ран, в том числе осложненных гнойной инфекцией. Чтобы довести материал до реальной медицины требуется, как минимум, проверить покрытия на животных и масштабировать технологию получения пленок. Важно, что у нас есть свой продуцент целлюлозы – штамм бактерий, и относительно простые регламенты получения антибактериальных раневых покрытий. В стадии завершения и описания – эксперимент по применению разработанных изделий из целлюлозы для лечения  модельных повреждений кожных покровов и подкожной клетчатки», – пояснила Татьяна Волова.

   Антибактериальные диски подавляют рост патогенных микроорганизмов

11/12/2017

Ученые предложили новый способ синтеза тонких ферромагнитных пленок для микросхем

Ученые Института физики им. Л. В. Киренского ФИЦ КНЦ СО РАН совместно с коллегами научились синтезировать тонкие кристаллические ферромагнитные пленки и разработали технологию придания им нужной формы. Такие пластины могут использоваться в электронных и спинтронных микросхемах.

Исследователи создали пленки из силицидов железа толщиной от сотен до десятков нанометров. Они синтезированы на подложке из кремния. Силицид железа — это соединение кремния и железа, которое, как правило, при определенной температуре обладает ферромагнитными свойствами. Но существуют и «немагнитные» силициды железа с уникальными для практического применения оптическими свойствами.

Такие пленки используются в качестве активных частей в устройствах оптики, в фотонике и в интегральных электронных и спинтронных микросхемах. Ферромагнитные тонкие пленки очень перспективны для спинтроники, которая позволяет создавать устройства для хранения и обработки информации. Такие устройства обладают более низким энергопотреблением и высокой скоростью по сравнению с традиционными электронными приборами.

Однако для создания таких устройств нужны пленки очень строгой геометрии. Это значит, что на синтезированные пленки нужно нанести шаблон и «вырезать» пленку в соответствии с ним. Для этого ученые уже давно используют травление: оно бывает жидким (химическим) и сухим (ионно-плазменным, реактивно-ионным или просто ионным). В процессе жидкостного травления пленку помещают в специальную жидкость — травитель, который растворяет излишек. Перед этим ученые с помощью фотолитографии наносят на пленки маски, чтобы задать нужный «рельеф» — маска не дает нужной части пленки раствориться. В сухом травлении этого же результата ученые добиваются с помощью газа, который физически или химически разрушает материал.

«Мы расширили область применения подхода, распространили его на новые железо-кремниевые сплавы и показали, что он работает. Также мы определили скорость травления пленок и изготовили микроустройство. Аналогичный подход может быть использован для изготовления различных структур для электроники, фотоники и других приложений», — рассказал один из авторов статьи Антон Тарасов, научный сотрудник Института физики имени Л.В. Киренского ФИЦ КНЦ СО РАН и старший преподаватель Сибирского федерального университета.

Большое преимущество разработанных пленок – не только их электронные и магнитные свойства, но и совместимость с наиболее распространенными технологическими полупроводниками. Это значит, что такие пленки можно выращивать на подложках из кремния, германия и арсенида галлия. Таким образом физики будут получать тонкие пленки высокого качества специфической формы и геометрии более простым и доступным способом. Более того, полученные результаты увеличивают выбор материалов, которые ученые могут применять при создании разных устройств.

«С помощью этой технологии можно создать устройства спинтроники или фотоники, потому что силициды железа обладают свойствами, полезными именно в этих областях науки. Сейчас мы с помощью разработанного подхода создаем пленки и изучаем зависимые от их топологии эффекты», — заключил ученый.

Рельеф тонкой кристаллической пленки
Антон Тарасов