Размер:
A A A
Цвет: C C C
Изображения Вкл. Выкл.
Обычная версия сайта
Логин
Пароль
EN

Федеральный исследовательский центр 
«Красноярский научный центр
Сибирского отделения Российской академии наук»

 Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Федеральный исследовательский центр 
«Красноярский научный центр
Сибирского отделения Российской академии наук»

Металлорганический каркасный материал можно применять в качестве электрооптического сенсора

1 октября 2024 г. ФИЦ КНЦ CO РАН

Металлорганический каркасный материал можно применять в качестве электрооптического сенсора

Учёные обнаружили трансформацию структуры и размера пор металлорганического каркасного соединения под воздействием окружающей среды. Часть пор каркаса остаётся открытой, создавая промежуточное состояние между упорядоченной и искажённой структурой. Полученные данные могут привести к созданию новых электрооптических датчиков. Результаты исследования опубликованы в журнале Dalton Transactions

Металлоорганические каркасные соединения относятся к гибридным материалам. Они представляют собой кристаллические пористые вещества из органических и неорганических компонентов, к примеру, из ионов металлов, связанных друг с другом органическими атомами — лигандами. Металлы и органические лиганды образуют решеточную структуру материала. Воздействие температуры, газов, жидкостей, электромагнитного излучения и других механических факторов приводит к изменению размера пор в этих материалах. Эта особенность высокопористых структур позволяет использовать их для поглощения и хранения различных химических веществ. Однако для более широкого применения гибких металлоорганических материалов необходимо понять, как управлять переходом пор из открытого состояния в закрытое и обратно.

Способность металлоорганических каркасов поглощать водяной пар и легко выделять его при невысоких давлениях и температурах, а также высокая рабочая ёмкость делают эти материалы привлекательными для применения в устройствах для контроля влажности и перераспределения тепла. Одним из таких материалов является металлоорганический каркасный полимер DUT-4. Он состоит из ионов алюминия и полимерных частиц, которые встраиваются в структуру каркаса. По традиции все металлоогранические каркасные соединения именуются по названию университета, в котором был впервые выполнен синтез, свое имя «DUT-4» получил в честь Дрезденского университета технологий.

Ученые ФИЦ «Красноярский научный центр СО РАН» вместе с коллегами из Санкт-Петербурга и Челябинска впервые продемонстрировали трансформацию структуры и размера пор каркаса DUT-4 под воздействием внешних факторов и нашли еще одну возможность его применения. Они проанализировали образец, содержащийся от нескольких часов до полугода при комнатной температуре и влажности 21%. В ходе исследования учёные обнаружили, что поры каркаса изменяли структуру и размер, деформировались и закрывались. Поры в металлоорганическом каркасе представляют собой одно-, двух- или трёхмерные структуры, состоящие из металлических кластеров, скоординированных с органическими лигандами. Доступ к закрытым порам ограничен или невозможен. В открытые поры могут проникать вещества. Ученые определили, что переход ускоряется при увеличении влажности с 21% до 80%.

Эксперименты также показали стабильность новой искаженной формы в течение как минимум шести месяцев. При этом исходное состояние могло быть восстановлено в вакууме. Значит, этот материал можно использовать несколько раз, что снижает финансовые и производственные затраты.

Ученые предположили, что изменение структуры каркаса повлияет на его оптические и электронные свойства. При облучении материала белым светом у него увеличилось оптическое пропускание в инфракрасном диапазоне. Электрические измерения показали увеличение тока и уменьшение падения напряжения при приложенном напряжении.

Крылов Александр к.ф.-м.н.JPG«Полученные результаты позволяют нам рассматривать металлоорганический каркас DUT-4 как новый материал с фазовым переходом, в котором структура, чувствительная к внешним воздействиям, играет ключевую роль. Наше исследование обнаружило простой и легкий способ преобразования металлоорганического каркаса при комнатной температуре, влажности и давлении, а также условия восстановления исходных свойств материала. Структурное преобразование металлоорганического каркаса также влияет на изменения оптических и электронных свойств DUT-4. Результаты нашего исследования открывают возможности для создания нового семейства материалов на основе металлоорганических каркасов для сенсорных и оптоэлектронных приложений», — отметил один из авторов работы Александр Крылов, кандидат физико-математических наук, старший научный сотрудник Института физики им. Л.В. Киренского.

В исследовании также принимали участие специалисты Университета ИТМО, Сибирского федерального университета и Южно-Уральского государственного университета.




Поделиться:



Наверх